Standard Model Lagrangian Density

Back in 1999, as a procrastination exercise while working on my Ph.D. in physics at UC Davis, I spent a couple hours on a Friday night writing out a fairly ineloquent form of the Standard Model Lagrangian density. I unpacked Appendix E in Diagrammatica by Nobel Laureate Martinus Veltman and complied it into one equation, making the pdf and LaTeX files accessible on my old website.

Since that time, this form of the Standard Model Lagrangian density has received some attention in Symmetry Magazine, TED (Brian Cox, “CERN’s Supercollider”), Wikipedia, and PBS Space Time (“The Equation That Explains (Nearly) Everything!”), amongst other places including artwork (by James De Villiers). Recently, Don Lincoln at Fermilab has also highlighted it on his popular YouTube channel.

Since 2006, I’ve been a professor of physics at Cal Poly, San Luis Obispo and, since I haven’t been at UC Davis for a while, and don’t have easy edit access to that content on my old site, I’m making the files available here on my personal page. This includes some long overdue corrections. Only the pdfs are available below, but I will make the LaTeX file available soon. Thanks to the many people who have contacted me over the past 25 years to provide feedback and discussion!

Cal Poly Graduation Speech Spring 2022

In June of 2022, as the Chair of the Academic Senate at Cal Poly, I was given the opportunity to deliver remarks at Cal Poly’s 2022 spring graduation on behalf of the faculty for each of the six college ceremonies.   Since serving in this role starting in July of 2020, I’ve really enjoyed giving graduation speeches during both Fall and Spring commencements.  

The Chair of the Academic Senate also has the honor of marching with the ceremonial Mace at the head of the processional and recessional.  The Mustang News wrote a nice article with a section summarizing the history of the Mace at Cal Poly.  The current mace was designed and created by Professor Emeritus Crissa Hewitt in 2001.   The commencement pamphlet states “The tradition of the academic mace dates from the Middle Ages when two ancient instruments, the royal scepter and the battle mace, were combined to form a symbol of the authority of the rector of the university.”  In my own mind, while I wield it, I imagine it to be less a symbol of authority, but rather a symbol representing the faculty defense of, and commitment to, seeking Truth.

For several of the ceremonies, I was also given the honor of distributing the graduation participation certificates to the students as their names were called (they don’t give the diploma’s out at commencement).  It was really an amazing experience to see each student’s face as they basked in the joy of their special moment.

Tom Gutierrez with Mace

Me with the ceremonial academic Mace just before the December 2021 commencement.

While crafting my remarks, my goal was to put the graduate’s pragmatic educational experience into a bigger picture while philosophically zooming in from the cosmological to the neurological to the subatomic.  I used a quote from Neil Peart (from the song Time Stand Still) and some science inspired by Carl Sagan. I also drew from mindfulness meditation traditions while sprinkling in a little stoic philosophy.

My remarks are only about 3 minutes long from when the clip starts.  This video is part of the full Cal Poly College and Science and Math ceremony, which was on Sunday, June 12, 2022 at about 12:30 (lasting about 2 hours). The sound isn’t great, so you might have to turn it up.  Below the video on this page is the text of the remarks.

I’m Tom Gutierrez, Chair of the Academic Senate at Cal Poly and Professor of Physics.

Let’s reflect a little on how you ended up here today.

Most of the electrons in your body, which mediate the everyday chemistry and biology we so know and love, were witness to the big bang over 13 billion years ago.

The heavy nuclei in your body, giving you most of your mass and keeping those electrons bound in their quantum haze, were forged at the center of stars, in supernova explosions, or in neutron star collisions billions of years ago.

As a former plasma of quarks and leptons, subject to fickle quantum fluctuations, you’ve come a long way since those early days!
Your matter has precipitated, emerged, and evolved against all odds from the beginning of time into you — the sentient creature sitting here in this moment.

You are an entity who has a wetware neural network so powerful in its skull, it can learn, it can ask questions, and has the potential to Understand the nature of humanity and the universe that birthed it.
As Carl Sagan said, “We are a way for the universe to know itself.”

Drawing inward and bringing ourselves into this moment, on behalf of Cal Poly’s Academic Senate and our faculty, I would like to congratulate all of our graduates! The faculty- student relationship is profoundly special, and we will continue to support you in pursuit of your professional and personal aspirations however we can. Faculty worked tirelessly to foster your content mastery and also expose you to a balance of breadth and depth across the curriculum. One goal was to create a space where you learned how to learn. I hoped this helped you develop the skills necessary to understand your humanity, learn about and apply the laws of nature, and to use the wetware in your skull to nudge the universe along in its journey to know itself.

I’d like to leave you with a quote from Neil Peart on the importance of living in the moment:

Time stand still
I’m not looking back
But I want to look around me now Time stands still
See more of the people
And the places that surround me now

Time stands still
Freeze this moment
A little bit longer
Make each sensation
A little bit stronger [because] Experience slips away

Looking forward, I wish you tranquility, happiness, and growth opportunities into the future! And stay connected to your cosmological roots. Again, congratulations!

Cal Poly Admissions and Fake News

Like many universities, Cal Poly, San Luis Obispo (where I work as a physics professor) is deploying a number of diversity and inclusivity initiatives to address problems in these areas on campus, primarily with respect to race.  The Cal Poly white paper outlining the initiatives is available here and there is a nice summary by the San Luis Obispo Tribune also available.  Initiatives of this kind are particularly pressing for Cal Poly because, amongst the 23 public California State University (CSU) schools, Cal Poly is by far the least diverse CSU campus, as described in this article in the San Luis Obispo Tribune.  Cal Poly’s white population fraction far exceeds those of all major public four-year universities in the state, including the highly selective University of California (UC) system.

To compound the problem, Cal Poly also has a history of race-based incidents (Mustang News), including the blackface incident and its fallout in the Spring of 2018 (NY Times).  At any other university, these would represent vile and inappropriate behavior, indicative of the ongoing race-based tensions as seen across the country and the world.  But, at Cal Poly, the effect is further amplified because, just by raw statistics, the voices of those being attacked are almost completely absent or drowned out.

The big areas being addressed in the various initiatives include 1) transforming campus culture to reduce latent and overt bias, helping Cal Poly become a more welcoming space for everyone, 2) designing outreach programs to highlight educational opportunities at Cal Poly across all demographics in the state, 3) providing more diverse scholarship opportunities for all students who choose to come here, and 4) adjusting admissions procedures to reduce arbitrary financial bias.

Note, race-based admissions criteria are not legal in California because of Proposition 209, so no “quotas” are being met. There is no “reverse discrimination” going on.  Indeed, it could be called “de-discrimination” in the sense that it will attempt to remove existing hurdles and to expand upon resources already available.  The initiatives represent a near- and long-term strategic effort to transform the demographics of Cal Poly to better reflect those of California, the people served by the CSU system. Again, these efforts are not using race as a criteria, but rather asking “why is Cal Poly so statistically out of line with the rest of the CSU, UCs, and the state itself in terms of its demographics?”  There is an obvious systematic bias at Cal Poly that the administration is attempting to rectify.  Even if an imperfect work in progress, good on them.

All quite sensible, right?  Well, then this happened, as reported by the Mustang News (Cal Poly’s student newspaper):

Fox News incorrectly reports Cal Poly slashing white enrollment and factoring race into admissions

A prominent member of of the College Republicans at Cal Poly, carefully representing herself as a “Cal Poly student” and “Campus Reform Correspondent” (referring to the organization Campus Reform), appeared on Fox News with the headline “Cal Poly plots to reduce white enrollment.”  Her affiliation is noteworthy because she does not identify herself as a member of the College Republicans nor a representative of the university.  The topic was covered in other outlets as well, some of which I won’t dignify by linking to them.  As of July 17, 2018, the original interview has apparently been scrubbed from the internet (still, one can cobble it together from the internet archive).  However, it was about as vapid and fact-free as one might expect based on the headline.  Now, in fairness, Fox News did actually retract the piece and even issued an apology.  After the interview aired, they contacted Cal Poly and did some fact checking.

What do you know? The goal isn’t to conspire to reduce the number of white students on campus.  That’s an embarrassing mischaracterization of the issue.  When your campus is 60% white and the rest of the public universities in the state are hovering around 35-40% (approximately the same as the state as a whole), a natural byproduct of fair diversification will likely be to reduce the number of white students.

 

It is important to recognize a few things.  First, a big part of the “reduce white enrollment” narrative is that somehow, to accomplish this diversification, Cal Poly will have to lower its standards.  This is pretty insulting.  However, Cal Poly’s very high, merit-based admission standards will remain the same — indeed, the standards will likely go up. The new strategies will simply widen the range of qualified applicants across the state and increase competition for the finite number of freshman spots available each fall.  If some demographics drop because of it, it will be because they weren’t able to compete on a more level playing field.

For example, the recent adjustment to admissions policy involves eliminating the early admissions deadline, as described in this article in the SLO Tribune. Previous admission deadlines arbitrarily favored families that did not require financial aid. Cal Poly’s early admissions system allowed qualified students, already accepted to Cal Poly, to accept an invitation to attend Cal Poly in the fall, a full year before arriving.  However, many notifications for federal financial aid are not distributed until the spring of the year of admission. This permitted students who did not require financial aid to take up spots before more- or equally-qualified students who required financial aid could even decide to accept (based entirely on financial reasons).

The early admissions deadline was certainly implemented in good faith to draw the best students in early with a “sure thing.”  However, the unintended consequence was to bias against highly qualified students who could not commit for purely financial reasons.  From a statistical point of view, white, upper-middle-class students tend not to require financial aid while students of color tend to require it based on the socio-economic conditions in California.  Thus, the otherwise good-intentioned early admissions system was intrinsically biased against highly qualified people of color.  By deregulating that arbitrary early deadline, more highly qualified students across a wider demographic (who were already admitted and so met existing high admission criteria) were able to accept.  Statistically speaking, this will obviously widen the range of accepted qualified California students and will tend to drive the demographics at Cal Poly to reflect that of California. In short, it is increasing merit-based admission by deregulating an arbitrary government rule that squelched competition.  Now, obviously the problems of diversity aren’t just financial and this won’t solve the entire issue.  However, finances do play a role and have been partly addressed with this policy adjustment.

After the early admission system was suspended in 2016, the incoming class of 2017 was the most ethnically diverse cohort in 20 years, as described in this article from the Mustang News (although still not in line with other CSUs or UCs).   In addition, that cohort had the highest incoming average high school GPA scores (3.95/4.00) at that time in Cal Poly’s history (Cal Poly’s insititional Research reports) and SAT/ACT high average scores were consistent with previous recent years.

In summary, Cal Poly’s ethnic demographic is objectively misaligned with the state and with other universities in the state.  This points to some systematic or even pathological biases specific to Cal Poly that need to be addressed. Diversity initiatives at Cal Poly are attempting to identify and remove existing barriers students may face when considering Cal Poly as their school of choice.  Cal Poly is not lowering admissions standards.  To frame the initiatives as a conspiracy trying to reduce the white student population at Cal Poly at the expense of lowering standards is misinformed and irresponsible — exactly the kind of thing we associate with fake news and propaganda.  The assertion is so manifestly ridiculous that it did not meet the standards of Fox News, compelling them to remove the piece from their archives and issue an apology.  Ironically, the existence of ignorant entities at Cal Poly who willingly frame the problem in that light is indicative of the very problem the initiatives are trying to address.

 

How Do I Learn New Things?

As an educator, I confront the two questions daily in the context of higher education:

  • how do students learn?
  • what is the role of teachers in the learning process?

There is a vast literature on this and entire academic fields of study devoted to these two questions.

Putting aside this ocean of work done by trained professionals, here I’d like to reflect on how I believe I learn new things.  It is an ongoing project for me to apply this to my own teaching.  However, this isn’t about my teaching style, but a meditation on my own internal modes of learning.

The main bullet points would be:

  • I have to want to learn and be engaged
  • I have to have a simple conceptual foothold to get me started
  • I need to see lots of examples, practice them myself, and obtain rapid feedback
  • I need to have some modest stress
  • I need to apply the learning repeatedly over long periods
  • I need to accept that sustained learning requires multiple exposures
  • I have to memorize key ideas and concepts
  • I need to develop an internal model

I have to want to learn a topic.

Learning a new thing I want to learn can be challenging.  However, it is perhaps not surprising that learning a new thing I don’t want to learn is really, really hard.  My strategy: If there is a topic that I’m being “forced” to learn (e.g. some kind of required training), I pretend I want to learn it.  Like many undergraduates, I had to take many classes (usually General Education courses) that I really didn’t want to take.  But once enrolled and attending, I made every effort to try and learn the new topic as if I wanted to learn it.  This shift in attitude made all the difference in my enjoyment of the course and my ability to learn the content.  Eventually, the sentiment becomes genuine and one really does want to learn the new topic.  This happened to me during an American History class in my senior year of college.  I ended up having to take it based on the GE options available.  But I kicked into this mode I described and really ended up enjoying it.  Another more recent example are these State-mandated sexual harassment sensitivity trainings we must do every couple years.  They aren’t exactly convenient to do and can be much longer to take than you expect.  It is natural to start resenting them.  However, by popping into my “pretend like I want to learn this” mode, they actually become quite interesting and informative.

I have to be engaged in the learning process.

Engagement strategies come in several forms for me:

  • Paying attention
  • Taking copious notes and drawing pictures
  • Making connections between ideas and to things I already know
  • Asking questions
  • Reviewing and repeating the content
  • Memorizing key elements

Here’s one strategy I use.  I don’t just asking questions as they come up, but actually actively think of questions to ask.  That is, even if I don’t think I have questions I still think of some to ask and write them all down in my notes with a “Q*” (circled) in the margin.  By doing this, with feedback, I learn what a “good” question is for a given topic and what a “silly” question is.  The idea that “there is no such thing as a bad question” is simply incorrect.  There are “good” questions and “bad” questions.  However, part of learning a new topic is to learn what the good and bad questions are.  This means asking lots of bad questions.  A better way of turning around that education trope would be “you will ask bad questions when you are learning something new, and that’s ok, even encouraged.”  To a point.  There is a pivot where asking lots questions becomes an attention-seeking exercise and wastes other people’s time, particularly in a classroom setting.  So there is a balance.  Sometimes just writing the question down and seeing if the education process answers it naturally is the best thing.

In contrast to some common active learning activities in modern pedagogy, I don’t usually benefit from talking to others who are also learning the topic (e.g. peer instruction, think-pair-share, etc.).  That activity is helpful for morale (e.g. realizing others are confused too), but it doesn’t seem to help with my learning.  What tends to happen is that we reinforce each others’ misconceptions and walk away thinking we know more than we do.  It can also reinforce a sense that “we are all confused, so the instructor must be screwing up.”  Talking with an instructor directly is a different matter and that can be very helpful.

I have to find an intellectual or conceptual foothold in the topic.

I have to get an early confidence boost by feeling like I understand one little, tiny thing then building on it.  My own strategy is finding analogies with things I already understand, but this has to be done delicately.  One bad analogy can set the learning process back.  This tiny thing is often a weird, special case of some concept.   What works as a foothold for me isn’t always easy to anticipate.   Frequently, it is an example that an expert would almost feel bad presenting because it doesn’t portray the entire picture and is too simplified.  It might even be something an instructor would regard as so self-evident as to not even be worth mentioning.  It can be a vapor-thin analogy or some very simple way to appreciate some concept.  It can sometimes be in the form of understanding the cultural landscape of a topic: “experts think of this idea in this way,” providing a heuristic, bird’s eye view of the concept.  Connecting back to the memorization and repetition theme above, it can mean simply knowing what some new vocabulary word means and how to use it in a sentence!  Yes, that basic!

With a foothold, even if somewhat trivial, the seeds of understanding start to bloom. Note: One can’t stick to the simple, heuristic version forever, but a foothold is essential for me to start.

I have to see a lot of examples then be able to try it myself with rapid feedback.

Coupled to the foothold is the well-crafted example.  My strategy is to seek such examples.  A few completely worked examples that build in complexity are really important to me as I learn new things.  It can take a rather abstract idea and solidify it very quickly.  Yes, the understanding gleaned from an example may be superficial by the standards of an expert, but for me-as-the-student these baby steps are super important.  After seeing a few examples, I need to try it myself then get instant feedback about how I did.  This procedure of seeing a well-crafted example, trying it myself, then getting feedback basically needs to be repeated in some form or another.

I have to have a learning context that has the right balance between stress and leisure.

If my motivation to learn is entirely carefree and leisurely, I’ve found my ability to learn is softened quite a bit.  I might be entertained, but I won’t really learn anything.  My strategy is to come up with a reason to learn something.  Sometimes this isn’t hard because I legitimately have to learn something.  However, even just having a certain personal drive to learn something new can be sufficient to motivate — but there has to be some intensity to the experience, even if internally (“artificially”) generated.  But too much stress is a serious problem.  If I feel that I “must” learn it, feel like I’m having to cram for some reason, or that a lot is at stake for some reason, my own thinking gets very clouded and the whole learning process gets damped.

I have to repeat and practice the modest skills I’ve built over a long period of time.

I can’t really learn something on first exposure. For me, sustainable learning and mastery is iterative.  I pretty much have to apply any new knowledge I learn on a regular basis to retain it.  The old “use it or lose it” platitude is basically true.  This isn’t really a surprise.  As a younger student, the half life of knowledge was longer.  However, I think the fact remains that having to use what I learn allows me to retain the “I learned this” status.

Of course, the motivation for learning something new might not be to use it indefinitely.  Having learned something, even in the short term, as a form of entertainment, can be rewarding.  However, having learned something once, just reviewing it can be easy and lets me get back in the groove. Going back to the intellectual foothold point above: these footholds can serve as reentry points.  They are like those little mnemonic boxes people use in their minds;  they are little pointers to topics, rather than the topics themselves.  With a simple conceptual trigger, a wide infrastructure of the original learning can reopen.

I have to (gasp) memorize stuff.

This is considered blasphemy in my field, but to learn something new I have to memorize a lot of patterns and repeatedly use them until I don’t have to think about them.  This is so certain words and patterns become integrated with my thinking and are no longer some external thing I have to keep looking up, which slows things down.  Even if I understand the concepts, having to stop and lookup/review “what does this symbol mean again?”  is very distracting and bogs down ongoing mastery.  This might include formulas, constants, vocabulary, graphics, sounds, etc.  The memorization need not be active, but it might need to be at first.  Yes, I can understand the concept of something without memorizing anything.  But, sadly, just understanding the concept isn’t usually good enough to actually apply something I’m trying to learn.  This flies in the face of the basic philosophy of my own field of study!  Concepts rein supreme!  In fact, it may even fly in the face of actual studies.  But I have a hard time giving this up.  I’m not saying that memorizing is the same as deep learning or “true understanding.” But it is essential for me if I want want to make progress and apply newfound knowledge.

I understand the concept of chess pretty intuitively, but could I really play it competently without knowing (without hesitation!) how the pieces move at a glance?  No way.  But make no mistake, just knowing how the pieces move isn’t mastery either.  However, it is a necessary condition for mastery.

Without memorizing stuff, the learning process can evaporate quickly.  As topics become more advanced beyond just the inspirational introduction, the information builds on itself.  Without simply knowing what the words mean, it all becomes a firehose of vocabulary.  If you want to think like an expert in that field, you have to know what the words and ideas actually are without hesitation.

It is easy to dismiss memorization and repetition as a pathetic crutch for the intellectually weak — this is easy to say if you already have the important things memorized!  But if you are just learning something new, having a few key ideas memorized and internalized (ideas that you might not yet understand) can make the learning go so much faster.

Memorization isn’t understanding, but it can make the process of understanding so much easier!

I have to build an internal model.

This is really the culmination of all of the above.  Eventually, the processes above align with my brain and I reach a certain level of mastery and learning.  I have attained an internal way of thinking of it that maps directly onto the reality of the topic.  It is difficult to describe an “internal model.”  It is neurological.  Internally, it is qualitative and part of my qualia.  Some set of ideas, words, concepts, applications, etc. that seemed unfamiliar are now familiar and can be applied to new things.  It is a curious effect.  The words and symbols that meant nothing last week now have some internal substance that can be manipulated in a meaningful way.  It is quite satisfying.  My ultimate test to see if I’ve learned a topic is to see if I can apply it to something new.  More frequently than not, I’m disappointed in my inability to do so at a level I would like.  It is humbling, but a nice check.  Learning and mastery are ongoing experiences, usually lifelong, and it should be no surprise that innovations and creative problem solving don’t come quickly.

So, that’s a very rough outline about how I tend to learn things.  I’ve certainly forgot many other factors.  Also, I’ve probably overstated and understated some of the ones above.  In any case, hopefully I’ve left you with some food for thought: how do YOU learn new things?

Teaching Philosphy

Force Density

I was recently promoted to full Professor of Physics at Cal Poly.  I joke that, nearly 50, I’ve finally grown up and got a real job.  This was roughly a thirty year project from starting my freshman year as a physics major at San Jose State in 1986, through my masters degree, through my Ph.D. at UC Davis, through three postdocs, through a tenure-track probationary period at Cal Poly, through a tenured Associate Professor position, until finally as a full Professor in the fall of 2016 at Cal Poly.

In my case for promotion, I had to submit a teaching philosophy, which I would like to share here.  The ideas in it are not new; I don’t claim to have invented them.  Moreover, they are not cited because, in some ways, they are rather ordinary, blending into the background mythology of teaching culture.  However, I feel that the particular personal way I have presented the ideas is perhaps worth sharing.  The essence can be summarized as this: “Like I began, I have applied my own teaching principles to my own journey in learning how to teach.”

Statement of Teaching Philosophy

In my nine years at Cal Poly, I feel I’ve grown as a teacher and mentor. However, this newfound wisdom also makes me question my own growth; I now know how little I know whereas, when I started, I thought I had it all figured out. As someone not formally educated in Education, here are some of the things I’ve learned.

I believe education is important, but its success and purpose are difficult to quantify.

I believe education is important, but its success and purpose are difficult to quantify.  In education, success and purpose can become a tautological exercise where one begins defining accomplishments in terms of what one is accomplishing. This is not unlike adding items you have already completed on a to-do list then immediately checking them off to feel productive. There are many sensible metrics of education effectiveness, but most are of a specialized nature or difficult to identify. Like Heisenberg’s celebrated Uncertainty Principle, it seems that the more specific a metric of one educational success is, the more uncertain is its ability to measure another aspect of success. In my own teaching and mentoring in physics, this abiguity has driven me to reflect on the purpose of our curriculum and focus on what we want to achieve and how to measure it. Nevertheless, I believe that education generates understanding of the world, removes ignorance, and allows us to face the future with courage and dignity.

Education generates understanding of the world, removes ignorance, and allows us to face the future with courage and dignity.

But setting aside abstract philosophies of education, my conclusion is that a successful education is one where a student discovers their own definition of success and develops the skills to pursue it.  My particular specialty is physics, but I’m also human. If I facilitate this process by providing some skills and focus though my physics and my humanity, both in and outside the classroom, then I have been a successful teacher and mentor. I have helped guide many students through the struggles of the technical, day-to-day details of coursework, mentored them as they find their career path, and consoled them in their struggle to find out who they are as a person.

A successful education is one where a student discovers their own definition of success and develops the skills to pursue it.

Helping physics students find their own definition of success and finding the corresponding skill set to accomplish this has been challenging for me. But it is a challenge I have committed my life to and embrace with aplomb. In physics, one of the biggest barriers to promoting student success is also one of its greatest strengths: physics is both very generalized and yet fundamental by nature. Physics involves scientific ideas spanning about 30 orders of magnitude in space and time – from the quantum world to the cosmos and everything in between. It is a daunting task to prioritize these ideas for undergraduates and generate practical skills while also imparting rigor, problem solving, and deep understanding of fundamental concepts about the nature of reality. In my own work, I continue to experiment with different teaching styles and techniques, but have settled into what might be called the “traditional method” of lecturing enthusiastically at a board with chalk, asking them questions in class, giving regular exams and quizzes with quick feedback, and being available to students in and out of class, either online or in person. This path has allowed me to optimize my own ability to convey to students my enthusiasm for physics and to coach them in a positive, constructive way through the learning process. Feedback from students indicate they genuinely appreciate this.

Being satisfied and fulfilled as an teacher is a critical part of the student’s success and learning process.

Being satisfied and fulfilled as an teacher is a critical part of the student’s success and learning process. An empowered instructor is one who feels they are making a difference. An instructor driven far outside their comfort zone will not facilitate student success. If an instructor’s enthusiasm is suppressed, both instructor and student will suffer. Nevertheless, a teacher should be flexible and encouraged to experiment with different teaching methods while innovating, but they should also settle into a style that is most comfortable for them without becoming complacent or without compromising intellectual integrity. Because I’ve found my comfort zone, this also creates a positive learning environment for the students. They trust me to guide them on the intellectual journey because of the friendly confidence I try to convey.

The future will always require good teachers to engage and inspire students face-to-face.

The future will always require good teachers to engage and inspire students face-to-face.  In my option, teaching and learning cannot be completely emulated with computer algorithms, online courses, or simply reading about a topic at home. Yes, all of those things can augment a learning experience but, until the invention of neural implants, which instantly inject knowledge, experience, and mastery directly into the human brain, interaction with a human teacher is necessary for deep learning. While I do add some elements of technology to my courses and mentoring, I try to learn everyone’s name and treat them as a coach would treat a team: we are all in it together and let’s try to win this game together. In this context, it gives me a chance to connect more with students inside and outside the classroom and give them very personalized feedback. Grades are not given as an authoritative effort to control, rather a genuine source of assessment that helps them improve their mastery. I aim to allow students to make mistakes and learn from them without feeling like they are a failure.

A teacher gives a student a foothold into a complex topic and helps them initiate the learning process.

A teacher gives a student a foothold into a complex topic and helps them initiate the learning process. A subject like physics is overwhelming – to try and learn it from scratch without guidance would be an intimidating undertaking. Without this foothold, developing skills in physics would be quite challenging. But, like with any project, it is best to master it in small, digestible chunks. The teacher is one who has made the journey through the material and can break the material into the right-sized pieces. I try to take the perspective of the student, remembering what is like not to know something, and then convey the concepts that allowed me to make the transition to an expert. I reenforce this by giving many content-rich homework and content-rich take home exams in addition to challenging in-class exams.

A teacher can facilitate learning and guide the process, but cannot be responsible for it.

A teacher can facilitate learning and guide the process, but cannot be responsible for it.  A topic cannot be mastered in a single course. It takes repeated exposure to a topic over many years to begin to develop a meaningful understanding of something new. Learning a topic is a complicated undertaking. How much one has learned may not be realized for weeks, months, or even years after being exposed to it. Sometimes learning happens actively and voluntarily, but it even happens passively and involuntarily. To ask students right after a course “how much did you learn” is a meaningless question. Most instructors learn new things about material they have been teaching for decades. Given the students are the least qualified to assess their own learning, how could students possibly know how much they learned after a course if they have no baseline to compare it to? The adage “the more you know, the more you know how little you know” applies here. Similarly, akin to the Dunning-Kruger effect, “the less you know, the less you know how little you know.” This latter effect tends to breed overconfidence. A good teacher gives students a sense of a bigger world of knowledge, generating some self doubt, but without squelching enthusiasm to explore it further.

One role of a teacher is to, without sacrificing rigor, promote student satisfaction and to inspire students to learn more about a topic for the rest of their lives.

 One role of a teacher is to, without sacrificing rigor, promote student satisfaction and to inspire students to learn more about a topic for the rest of their lives.  In some ways, I value student satisfaction and the inspiration to continue their intellectual journey more than the content itself. In this respect, I try and provide the student with an educational Experience rather than just another class.

So, like I began, I have applied my own teaching principles to my own journey in learning how to teach.  By doing so, I have learned how little I knew. I have defined my own success and pursued the skills to attain it. I have taken initiative in generating and expanding my own learning process. Without compromising rigor, I have also found satisfaction in the experience of teaching, inspiring me to continue learning about it the rest of my life. This experience, I hope, makes a difference to my students and allows them to find their own successful paths.

Science Lies? Tales from the Science Illuminati

I’m a physics professor at the California Polytechnic State University in San Luis Obispo, CA.  Recently I came tWriting on dooro work early to find my office door decorated with the word “LIES” written in a childish scrawl across a “I Support Science” Darwin Fish sticker I have in the window of my office door.  The graffito, written with a red whiteboard marker, was probably composed by a student the evening before while studying in the building.  It was a minor annoyance to remove it because it was written on the frosted matte side of the window that wasn’t really meant to be used as a whiteboard.  I notified my Chair and my Dean of the situation.  They were sympathetic and obviously found the vandalism inappropriate.

I think it bothered me for all the right reasons.  I’m reminded that campus climate is not exactly universally friendly toward certain scientific principles that happen to be in tension with people’s religion.  That’s not good.  It makes me uncomfortable.  But in addition to the message, what makes me feel strange is the willingness to deface a professor’s door at all.  Even if someone wrote “cool!” across the fish, it would feel weird.  Who does that?

But, I was also able to dismiss it for all the right reasons. When the best argument someone can muster against evolution is an anonymous “LIES” scribbled on a physics professor’s door in the middle of the night,  it betrays a lazy and crippling intellectual weakness.  The feeble anonymous assertion “LIES” seems a cowardly gasp.   It’s a spontaneous act by a creationist that un-coyly says “I strongly disagree with you.”  But it is weird language. A lie is a deliberate act to deceive.  It implies evolution is like a conspiracy perpetuated by the Science Illuminati.  It would be the kind of anti-establishment graffiti someone would see in the 70s.  Naturally, I know exactly what it means to write “LIES” across an “I Support Science” Darwin Fish.  It is obvious.   However, the word choice is funny.  I think what they really meant was “WRONG.”

Some peers have shrugged off the defacement with a “kids will be kids” attitude: “Yes, it’s inappropriate, but you sort of had it coming with that provocative sticker.”  It is a sad state of affairs when passively declaring support for one of the most evidence-based theoretical frameworks in all of science is considered “provocative.”  The most support I’ve received is from the students in my department.  They were genuinely shocked at the event and were actually concerned about me, unambiguously condemning the action.  One student wrote me a very touching email making it clear that he and the other students stood behind me.  Although an unfortunate context, that part really did make me feel greatly supported.  It is a privilege to work with such colleagues.

Now back to sacrificing another Schrödinger’s Goat in my weekly ritual to actively perpetuate my sinister New World Order Parameter.